Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Iatagan, Mariana"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Artificial Intelligence-Based Decision-Making Algorithms, Internet of Things Sensing Networks, and Deep Learning-Assisted Smart Process Management in Cyber-Physical Production Systems
    (MDPI, 2021-10) Andronie, Mihai; Lăzăroiu, George; Iatagan, Mariana; Uță, Cristian; Ștefănescu, Roxana; Cocoșatu, Mădălina
    With growing evidence of deep learning-assisted smart process planning, there is an essential demand for comprehending whether cyber-physical production systems (CPPSs) are adequate in managing complexity and flexibility, configuring the smart factory. In this research, prior findings were cumulated indicating that the interoperability between Internet of Things-based real-time production logistics and cyber-physical process monitoring systems can decide upon the progression of operations advancing a system to the intended state in CPPSs. We carried out a quantitative literature review of ProQuest, Scopus, and the Web of Science throughout March and August 2021, with search terms including "cyber-physical production systems ", "cyber-physical manufacturing systems ", "smart process manufacturing ", "smart industrial manufacturing processes ", "networked manufacturing systems ", "industrial cyber-physical systems, " "smart industrial production processes ", and "sustainable Internet of Things-based manufacturing systems ". As we analyzed research published between 2017 and 2021, only 489 papers met the eligibility criteria. By removing controversial or unclear findings (scanty/unimportant data), results unsupported by replication, undetailed content, or papers having quite similar titles, we decided on 164, chiefly empirical, sources. Subsequent analyses should develop on real-time sensor networks, so as to configure the importance of artificial intelligence-driven big data analytics by use of cyber-physical production networks.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback